3.446 \(\int \frac{(a+b \sec (c+d x))^{3/2} (A+B \sec (c+d x))}{\sec ^{\frac{7}{2}}(c+d x)} \, dx\)

Optimal. Leaf size=342 \[ \frac{2 \left (a^2-b^2\right ) \left (25 a^2 A+21 a b B-6 A b^2\right ) \sqrt{\sec (c+d x)} \sqrt{\frac{a \cos (c+d x)+b}{a+b}} \text{EllipticF}\left (\frac{1}{2} (c+d x),\frac{2 a}{a+b}\right )}{105 a^2 d \sqrt{a+b \sec (c+d x)}}+\frac{2 \left (25 a^2 A+42 a b B+3 A b^2\right ) \sin (c+d x) \sqrt{a+b \sec (c+d x)}}{105 a d \sqrt{\sec (c+d x)}}+\frac{2 \left (82 a^2 A b+63 a^3 B+21 a b^2 B-6 A b^3\right ) \sqrt{a+b \sec (c+d x)} E\left (\frac{1}{2} (c+d x)|\frac{2 a}{a+b}\right )}{105 a^2 d \sqrt{\sec (c+d x)} \sqrt{\frac{a \cos (c+d x)+b}{a+b}}}+\frac{2 (7 a B+8 A b) \sin (c+d x) \sqrt{a+b \sec (c+d x)}}{35 d \sec ^{\frac{3}{2}}(c+d x)}+\frac{2 a A \sin (c+d x) \sqrt{a+b \sec (c+d x)}}{7 d \sec ^{\frac{5}{2}}(c+d x)} \]

[Out]

(2*(a^2 - b^2)*(25*a^2*A - 6*A*b^2 + 21*a*b*B)*Sqrt[(b + a*Cos[c + d*x])/(a + b)]*EllipticF[(c + d*x)/2, (2*a)
/(a + b)]*Sqrt[Sec[c + d*x]])/(105*a^2*d*Sqrt[a + b*Sec[c + d*x]]) + (2*(82*a^2*A*b - 6*A*b^3 + 63*a^3*B + 21*
a*b^2*B)*EllipticE[(c + d*x)/2, (2*a)/(a + b)]*Sqrt[a + b*Sec[c + d*x]])/(105*a^2*d*Sqrt[(b + a*Cos[c + d*x])/
(a + b)]*Sqrt[Sec[c + d*x]]) + (2*a*A*Sqrt[a + b*Sec[c + d*x]]*Sin[c + d*x])/(7*d*Sec[c + d*x]^(5/2)) + (2*(8*
A*b + 7*a*B)*Sqrt[a + b*Sec[c + d*x]]*Sin[c + d*x])/(35*d*Sec[c + d*x]^(3/2)) + (2*(25*a^2*A + 3*A*b^2 + 42*a*
b*B)*Sqrt[a + b*Sec[c + d*x]]*Sin[c + d*x])/(105*a*d*Sqrt[Sec[c + d*x]])

________________________________________________________________________________________

Rubi [A]  time = 1.12856, antiderivative size = 342, normalized size of antiderivative = 1., number of steps used = 10, number of rules used = 9, integrand size = 35, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.257, Rules used = {4025, 4104, 4035, 3856, 2655, 2653, 3858, 2663, 2661} \[ \frac{2 \left (25 a^2 A+42 a b B+3 A b^2\right ) \sin (c+d x) \sqrt{a+b \sec (c+d x)}}{105 a d \sqrt{\sec (c+d x)}}+\frac{2 \left (a^2-b^2\right ) \left (25 a^2 A+21 a b B-6 A b^2\right ) \sqrt{\sec (c+d x)} \sqrt{\frac{a \cos (c+d x)+b}{a+b}} F\left (\frac{1}{2} (c+d x)|\frac{2 a}{a+b}\right )}{105 a^2 d \sqrt{a+b \sec (c+d x)}}+\frac{2 \left (82 a^2 A b+63 a^3 B+21 a b^2 B-6 A b^3\right ) \sqrt{a+b \sec (c+d x)} E\left (\frac{1}{2} (c+d x)|\frac{2 a}{a+b}\right )}{105 a^2 d \sqrt{\sec (c+d x)} \sqrt{\frac{a \cos (c+d x)+b}{a+b}}}+\frac{2 (7 a B+8 A b) \sin (c+d x) \sqrt{a+b \sec (c+d x)}}{35 d \sec ^{\frac{3}{2}}(c+d x)}+\frac{2 a A \sin (c+d x) \sqrt{a+b \sec (c+d x)}}{7 d \sec ^{\frac{5}{2}}(c+d x)} \]

Antiderivative was successfully verified.

[In]

Int[((a + b*Sec[c + d*x])^(3/2)*(A + B*Sec[c + d*x]))/Sec[c + d*x]^(7/2),x]

[Out]

(2*(a^2 - b^2)*(25*a^2*A - 6*A*b^2 + 21*a*b*B)*Sqrt[(b + a*Cos[c + d*x])/(a + b)]*EllipticF[(c + d*x)/2, (2*a)
/(a + b)]*Sqrt[Sec[c + d*x]])/(105*a^2*d*Sqrt[a + b*Sec[c + d*x]]) + (2*(82*a^2*A*b - 6*A*b^3 + 63*a^3*B + 21*
a*b^2*B)*EllipticE[(c + d*x)/2, (2*a)/(a + b)]*Sqrt[a + b*Sec[c + d*x]])/(105*a^2*d*Sqrt[(b + a*Cos[c + d*x])/
(a + b)]*Sqrt[Sec[c + d*x]]) + (2*a*A*Sqrt[a + b*Sec[c + d*x]]*Sin[c + d*x])/(7*d*Sec[c + d*x]^(5/2)) + (2*(8*
A*b + 7*a*B)*Sqrt[a + b*Sec[c + d*x]]*Sin[c + d*x])/(35*d*Sec[c + d*x]^(3/2)) + (2*(25*a^2*A + 3*A*b^2 + 42*a*
b*B)*Sqrt[a + b*Sec[c + d*x]]*Sin[c + d*x])/(105*a*d*Sqrt[Sec[c + d*x]])

Rule 4025

Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^(m_)*(csc[(e_.) + (f_.)*(x_)]*
(B_.) + (A_)), x_Symbol] :> Simp[(a*A*Cot[e + f*x]*(a + b*Csc[e + f*x])^(m - 1)*(d*Csc[e + f*x])^n)/(f*n), x]
+ Dist[1/(d*n), Int[(a + b*Csc[e + f*x])^(m - 2)*(d*Csc[e + f*x])^(n + 1)*Simp[a*(a*B*n - A*b*(m - n - 1)) + (
2*a*b*B*n + A*(b^2*n + a^2*(1 + n)))*Csc[e + f*x] + b*(b*B*n + a*A*(m + n))*Csc[e + f*x]^2, x], x], x] /; Free
Q[{a, b, d, e, f, A, B}, x] && NeQ[A*b - a*B, 0] && NeQ[a^2 - b^2, 0] && GtQ[m, 1] && LeQ[n, -1]

Rule 4104

Int[((A_.) + csc[(e_.) + (f_.)*(x_)]*(B_.) + csc[(e_.) + (f_.)*(x_)]^2*(C_.))*(csc[(e_.) + (f_.)*(x_)]*(d_.))^
(n_)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^(m_), x_Symbol] :> Simp[(A*Cot[e + f*x]*(a + b*Csc[e + f*x])^(m +
1)*(d*Csc[e + f*x])^n)/(a*f*n), x] + Dist[1/(a*d*n), Int[(a + b*Csc[e + f*x])^m*(d*Csc[e + f*x])^(n + 1)*Simp[
a*B*n - A*b*(m + n + 1) + a*(A + A*n + C*n)*Csc[e + f*x] + A*b*(m + n + 2)*Csc[e + f*x]^2, x], x], x] /; FreeQ
[{a, b, d, e, f, A, B, C, m}, x] && NeQ[a^2 - b^2, 0] && LeQ[n, -1]

Rule 4035

Int[(csc[(e_.) + (f_.)*(x_)]*(B_.) + (A_))/(Sqrt[csc[(e_.) + (f_.)*(x_)]*(d_.)]*Sqrt[csc[(e_.) + (f_.)*(x_)]*(
b_.) + (a_)]), x_Symbol] :> Dist[A/a, Int[Sqrt[a + b*Csc[e + f*x]]/Sqrt[d*Csc[e + f*x]], x], x] - Dist[(A*b -
a*B)/(a*d), Int[Sqrt[d*Csc[e + f*x]]/Sqrt[a + b*Csc[e + f*x]], x], x] /; FreeQ[{a, b, d, e, f, A, B}, x] && Ne
Q[A*b - a*B, 0] && NeQ[a^2 - b^2, 0]

Rule 3856

Int[Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)]/Sqrt[csc[(e_.) + (f_.)*(x_)]*(d_.)], x_Symbol] :> Dist[Sqrt[a +
 b*Csc[e + f*x]]/(Sqrt[d*Csc[e + f*x]]*Sqrt[b + a*Sin[e + f*x]]), Int[Sqrt[b + a*Sin[e + f*x]], x], x] /; Free
Q[{a, b, d, e, f}, x] && NeQ[a^2 - b^2, 0]

Rule 2655

Int[Sqrt[(a_) + (b_.)*sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Dist[Sqrt[a + b*Sin[c + d*x]]/Sqrt[(a + b*Sin[c +
 d*x])/(a + b)], Int[Sqrt[a/(a + b) + (b*Sin[c + d*x])/(a + b)], x], x] /; FreeQ[{a, b, c, d}, x] && NeQ[a^2 -
 b^2, 0] &&  !GtQ[a + b, 0]

Rule 2653

Int[Sqrt[(a_) + (b_.)*sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2*Sqrt[a + b]*EllipticE[(1*(c - Pi/2 + d*x)
)/2, (2*b)/(a + b)])/d, x] /; FreeQ[{a, b, c, d}, x] && NeQ[a^2 - b^2, 0] && GtQ[a + b, 0]

Rule 3858

Int[Sqrt[csc[(e_.) + (f_.)*(x_)]*(d_.)]/Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)], x_Symbol] :> Dist[(Sqrt[d*
Csc[e + f*x]]*Sqrt[b + a*Sin[e + f*x]])/Sqrt[a + b*Csc[e + f*x]], Int[1/Sqrt[b + a*Sin[e + f*x]], x], x] /; Fr
eeQ[{a, b, d, e, f}, x] && NeQ[a^2 - b^2, 0]

Rule 2663

Int[1/Sqrt[(a_) + (b_.)*sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Dist[Sqrt[(a + b*Sin[c + d*x])/(a + b)]/Sqrt[a
+ b*Sin[c + d*x]], Int[1/Sqrt[a/(a + b) + (b*Sin[c + d*x])/(a + b)], x], x] /; FreeQ[{a, b, c, d}, x] && NeQ[a
^2 - b^2, 0] &&  !GtQ[a + b, 0]

Rule 2661

Int[1/Sqrt[(a_) + (b_.)*sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2*EllipticF[(1*(c - Pi/2 + d*x))/2, (2*b)
/(a + b)])/(d*Sqrt[a + b]), x] /; FreeQ[{a, b, c, d}, x] && NeQ[a^2 - b^2, 0] && GtQ[a + b, 0]

Rubi steps

\begin{align*} \int \frac{(a+b \sec (c+d x))^{3/2} (A+B \sec (c+d x))}{\sec ^{\frac{7}{2}}(c+d x)} \, dx &=\frac{2 a A \sqrt{a+b \sec (c+d x)} \sin (c+d x)}{7 d \sec ^{\frac{5}{2}}(c+d x)}-\frac{2}{7} \int \frac{-\frac{1}{2} a (8 A b+7 a B)-\frac{1}{2} \left (5 a^2 A+7 A b^2+14 a b B\right ) \sec (c+d x)-\frac{1}{2} b (4 a A+7 b B) \sec ^2(c+d x)}{\sec ^{\frac{5}{2}}(c+d x) \sqrt{a+b \sec (c+d x)}} \, dx\\ &=\frac{2 a A \sqrt{a+b \sec (c+d x)} \sin (c+d x)}{7 d \sec ^{\frac{5}{2}}(c+d x)}+\frac{2 (8 A b+7 a B) \sqrt{a+b \sec (c+d x)} \sin (c+d x)}{35 d \sec ^{\frac{3}{2}}(c+d x)}+\frac{4 \int \frac{\frac{1}{4} a \left (25 a^2 A+3 A b^2+42 a b B\right )+\frac{1}{4} a \left (44 a A b+21 a^2 B+35 b^2 B\right ) \sec (c+d x)+\frac{1}{2} a b (8 A b+7 a B) \sec ^2(c+d x)}{\sec ^{\frac{3}{2}}(c+d x) \sqrt{a+b \sec (c+d x)}} \, dx}{35 a}\\ &=\frac{2 a A \sqrt{a+b \sec (c+d x)} \sin (c+d x)}{7 d \sec ^{\frac{5}{2}}(c+d x)}+\frac{2 (8 A b+7 a B) \sqrt{a+b \sec (c+d x)} \sin (c+d x)}{35 d \sec ^{\frac{3}{2}}(c+d x)}+\frac{2 \left (25 a^2 A+3 A b^2+42 a b B\right ) \sqrt{a+b \sec (c+d x)} \sin (c+d x)}{105 a d \sqrt{\sec (c+d x)}}-\frac{8 \int \frac{-\frac{1}{8} a \left (82 a^2 A b-6 A b^3+63 a^3 B+21 a b^2 B\right )-\frac{1}{8} a^2 \left (25 a^2 A+51 A b^2+84 a b B\right ) \sec (c+d x)}{\sqrt{\sec (c+d x)} \sqrt{a+b \sec (c+d x)}} \, dx}{105 a^2}\\ &=\frac{2 a A \sqrt{a+b \sec (c+d x)} \sin (c+d x)}{7 d \sec ^{\frac{5}{2}}(c+d x)}+\frac{2 (8 A b+7 a B) \sqrt{a+b \sec (c+d x)} \sin (c+d x)}{35 d \sec ^{\frac{3}{2}}(c+d x)}+\frac{2 \left (25 a^2 A+3 A b^2+42 a b B\right ) \sqrt{a+b \sec (c+d x)} \sin (c+d x)}{105 a d \sqrt{\sec (c+d x)}}+\frac{\left (\left (a^2-b^2\right ) \left (25 a^2 A-6 A b^2+21 a b B\right )\right ) \int \frac{\sqrt{\sec (c+d x)}}{\sqrt{a+b \sec (c+d x)}} \, dx}{105 a^2}+\frac{\left (82 a^2 A b-6 A b^3+63 a^3 B+21 a b^2 B\right ) \int \frac{\sqrt{a+b \sec (c+d x)}}{\sqrt{\sec (c+d x)}} \, dx}{105 a^2}\\ &=\frac{2 a A \sqrt{a+b \sec (c+d x)} \sin (c+d x)}{7 d \sec ^{\frac{5}{2}}(c+d x)}+\frac{2 (8 A b+7 a B) \sqrt{a+b \sec (c+d x)} \sin (c+d x)}{35 d \sec ^{\frac{3}{2}}(c+d x)}+\frac{2 \left (25 a^2 A+3 A b^2+42 a b B\right ) \sqrt{a+b \sec (c+d x)} \sin (c+d x)}{105 a d \sqrt{\sec (c+d x)}}+\frac{\left (\left (a^2-b^2\right ) \left (25 a^2 A-6 A b^2+21 a b B\right ) \sqrt{b+a \cos (c+d x)} \sqrt{\sec (c+d x)}\right ) \int \frac{1}{\sqrt{b+a \cos (c+d x)}} \, dx}{105 a^2 \sqrt{a+b \sec (c+d x)}}+\frac{\left (\left (82 a^2 A b-6 A b^3+63 a^3 B+21 a b^2 B\right ) \sqrt{a+b \sec (c+d x)}\right ) \int \sqrt{b+a \cos (c+d x)} \, dx}{105 a^2 \sqrt{b+a \cos (c+d x)} \sqrt{\sec (c+d x)}}\\ &=\frac{2 a A \sqrt{a+b \sec (c+d x)} \sin (c+d x)}{7 d \sec ^{\frac{5}{2}}(c+d x)}+\frac{2 (8 A b+7 a B) \sqrt{a+b \sec (c+d x)} \sin (c+d x)}{35 d \sec ^{\frac{3}{2}}(c+d x)}+\frac{2 \left (25 a^2 A+3 A b^2+42 a b B\right ) \sqrt{a+b \sec (c+d x)} \sin (c+d x)}{105 a d \sqrt{\sec (c+d x)}}+\frac{\left (\left (a^2-b^2\right ) \left (25 a^2 A-6 A b^2+21 a b B\right ) \sqrt{\frac{b+a \cos (c+d x)}{a+b}} \sqrt{\sec (c+d x)}\right ) \int \frac{1}{\sqrt{\frac{b}{a+b}+\frac{a \cos (c+d x)}{a+b}}} \, dx}{105 a^2 \sqrt{a+b \sec (c+d x)}}+\frac{\left (\left (82 a^2 A b-6 A b^3+63 a^3 B+21 a b^2 B\right ) \sqrt{a+b \sec (c+d x)}\right ) \int \sqrt{\frac{b}{a+b}+\frac{a \cos (c+d x)}{a+b}} \, dx}{105 a^2 \sqrt{\frac{b+a \cos (c+d x)}{a+b}} \sqrt{\sec (c+d x)}}\\ &=\frac{2 \left (a^2-b^2\right ) \left (25 a^2 A-6 A b^2+21 a b B\right ) \sqrt{\frac{b+a \cos (c+d x)}{a+b}} F\left (\frac{1}{2} (c+d x)|\frac{2 a}{a+b}\right ) \sqrt{\sec (c+d x)}}{105 a^2 d \sqrt{a+b \sec (c+d x)}}+\frac{2 \left (82 a^2 A b-6 A b^3+63 a^3 B+21 a b^2 B\right ) E\left (\frac{1}{2} (c+d x)|\frac{2 a}{a+b}\right ) \sqrt{a+b \sec (c+d x)}}{105 a^2 d \sqrt{\frac{b+a \cos (c+d x)}{a+b}} \sqrt{\sec (c+d x)}}+\frac{2 a A \sqrt{a+b \sec (c+d x)} \sin (c+d x)}{7 d \sec ^{\frac{5}{2}}(c+d x)}+\frac{2 (8 A b+7 a B) \sqrt{a+b \sec (c+d x)} \sin (c+d x)}{35 d \sec ^{\frac{3}{2}}(c+d x)}+\frac{2 \left (25 a^2 A+3 A b^2+42 a b B\right ) \sqrt{a+b \sec (c+d x)} \sin (c+d x)}{105 a d \sqrt{\sec (c+d x)}}\\ \end{align*}

Mathematica [A]  time = 1.9355, size = 255, normalized size = 0.75 \[ \frac{(a+b \sec (c+d x))^{3/2} \left (4 \sqrt{\frac{a \cos (c+d x)+b}{a+b}} \left (a^2 \left (25 a^2 A+84 a b B+51 A b^2\right ) \text{EllipticF}\left (\frac{1}{2} (c+d x),\frac{2 a}{a+b}\right )+\left (82 a^2 A b+63 a^3 B+21 a b^2 B-6 A b^3\right ) \left ((a+b) E\left (\frac{1}{2} (c+d x)|\frac{2 a}{a+b}\right )-b \text{EllipticF}\left (\frac{1}{2} (c+d x),\frac{2 a}{a+b}\right )\right )\right )+a (a \cos (c+d x)+b) \left (\left (115 a^2 A+168 a b B+12 A b^2\right ) \sin (c+d x)+3 a (2 (7 a B+8 A b) \sin (2 (c+d x))+5 a A \sin (3 (c+d x)))\right )\right )}{210 a^2 d \sec ^{\frac{3}{2}}(c+d x) (a \cos (c+d x)+b)^2} \]

Antiderivative was successfully verified.

[In]

Integrate[((a + b*Sec[c + d*x])^(3/2)*(A + B*Sec[c + d*x]))/Sec[c + d*x]^(7/2),x]

[Out]

((a + b*Sec[c + d*x])^(3/2)*(4*Sqrt[(b + a*Cos[c + d*x])/(a + b)]*(a^2*(25*a^2*A + 51*A*b^2 + 84*a*b*B)*Ellipt
icF[(c + d*x)/2, (2*a)/(a + b)] + (82*a^2*A*b - 6*A*b^3 + 63*a^3*B + 21*a*b^2*B)*((a + b)*EllipticE[(c + d*x)/
2, (2*a)/(a + b)] - b*EllipticF[(c + d*x)/2, (2*a)/(a + b)])) + a*(b + a*Cos[c + d*x])*((115*a^2*A + 12*A*b^2
+ 168*a*b*B)*Sin[c + d*x] + 3*a*(2*(8*A*b + 7*a*B)*Sin[2*(c + d*x)] + 5*a*A*Sin[3*(c + d*x)]))))/(210*a^2*d*(b
 + a*Cos[c + d*x])^2*Sec[c + d*x]^(3/2))

________________________________________________________________________________________

Maple [B]  time = 0.568, size = 3752, normalized size = 11. \begin{align*} \text{output too large to display} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a+b*sec(d*x+c))^(3/2)*(A+B*sec(d*x+c))/sec(d*x+c)^(7/2),x)

[Out]

-2/105/d/a^2/((a-b)/(a+b))^(1/2)*(25*A*EllipticF((-1+cos(d*x+c))*((a-b)/(a+b))^(1/2)/sin(d*x+c),(-(a+b)/(a-b))
^(1/2))*a^4*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*(1/(cos(d*x+c)+1))^(1/2)*sin(d*x+c)+6*A*EllipticE(
(-1+cos(d*x+c))*((a-b)/(a+b))^(1/2)/sin(d*x+c),(-(a+b)/(a-b))^(1/2))*b^4*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)
+1))^(1/2)*(1/(cos(d*x+c)+1))^(1/2)*sin(d*x+c)-82*A*sin(d*x+c)*cos(d*x+c)*EllipticF((-1+cos(d*x+c))*((a-b)/(a+
b))^(1/2)/sin(d*x+c),(-(a+b)/(a-b))^(1/2))*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*(1/(cos(d*x+c)+1))^
(1/2)*a^3*b-25*A*a^3*b*((a-b)/(a+b))^(1/2)-82*A*a^2*b^2*((a-b)/(a+b))^(1/2)-3*A*a*b^3*((a-b)/(a+b))^(1/2)-63*B
*a^3*b*((a-b)/(a+b))^(1/2)-42*B*a^2*b^2*((a-b)/(a+b))^(1/2)-21*B*a*b^3*((a-b)/(a+b))^(1/2)-21*B*sin(d*x+c)*cos
(d*x+c)*EllipticF((-1+cos(d*x+c))*((a-b)/(a+b))^(1/2)/sin(d*x+c),(-(a+b)/(a-b))^(1/2))*(1/(a+b)*(b+a*cos(d*x+c
))/(cos(d*x+c)+1))^(1/2)*(1/(cos(d*x+c)+1))^(1/2)*a^2*b^2-63*B*sin(d*x+c)*cos(d*x+c)*(1/(a+b)*(b+a*cos(d*x+c))
/(cos(d*x+c)+1))^(1/2)*(1/(cos(d*x+c)+1))^(1/2)*EllipticE((-1+cos(d*x+c))*((a-b)/(a+b))^(1/2)/sin(d*x+c),(-(a+
b)/(a-b))^(1/2))*a^3*b+21*B*sin(d*x+c)*cos(d*x+c)*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*(1/(cos(d*x+
c)+1))^(1/2)*EllipticE((-1+cos(d*x+c))*((a-b)/(a+b))^(1/2)/sin(d*x+c),(-(a+b)/(a-b))^(1/2))*a^2*b^2-21*B*sin(d
*x+c)*cos(d*x+c)*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*(1/(cos(d*x+c)+1))^(1/2)*EllipticE((-1+cos(d*
x+c))*((a-b)/(a+b))^(1/2)/sin(d*x+c),(-(a+b)/(a-b))^(1/2))*a*b^3+25*A*sin(d*x+c)*cos(d*x+c)*EllipticF((-1+cos(
d*x+c))*((a-b)/(a+b))^(1/2)/sin(d*x+c),(-(a+b)/(a-b))^(1/2))*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*(
1/(cos(d*x+c)+1))^(1/2)*a^4+6*A*sin(d*x+c)*cos(d*x+c)*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*(1/(cos(
d*x+c)+1))^(1/2)*EllipticE((-1+cos(d*x+c))*((a-b)/(a+b))^(1/2)/sin(d*x+c),(-(a+b)/(a-b))^(1/2))*b^4-63*B*sin(d
*x+c)*cos(d*x+c)*EllipticF((-1+cos(d*x+c))*((a-b)/(a+b))^(1/2)/sin(d*x+c),(-(a+b)/(a-b))^(1/2))*(1/(a+b)*(b+a*
cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*(1/(cos(d*x+c)+1))^(1/2)*a^4+63*B*sin(d*x+c)*cos(d*x+c)*(1/(a+b)*(b+a*cos(d*
x+c))/(cos(d*x+c)+1))^(1/2)*(1/(cos(d*x+c)+1))^(1/2)*EllipticE((-1+cos(d*x+c))*((a-b)/(a+b))^(1/2)/sin(d*x+c),
(-(a+b)/(a-b))^(1/2))*a^4-82*A*EllipticF((-1+cos(d*x+c))*((a-b)/(a+b))^(1/2)/sin(d*x+c),(-(a+b)/(a-b))^(1/2))*
a^3*b*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*(1/(cos(d*x+c)+1))^(1/2)*sin(d*x+c)+51*A*EllipticF((-1+c
os(d*x+c))*((a-b)/(a+b))^(1/2)/sin(d*x+c),(-(a+b)/(a-b))^(1/2))*a^2*b^2*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+
1))^(1/2)*(1/(cos(d*x+c)+1))^(1/2)*sin(d*x+c)+6*A*EllipticF((-1+cos(d*x+c))*((a-b)/(a+b))^(1/2)/sin(d*x+c),(-(
a+b)/(a-b))^(1/2))*a*b^3*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*(1/(cos(d*x+c)+1))^(1/2)*sin(d*x+c)+8
2*A*EllipticE((-1+cos(d*x+c))*((a-b)/(a+b))^(1/2)/sin(d*x+c),(-(a+b)/(a-b))^(1/2))*a^3*b*(1/(a+b)*(b+a*cos(d*x
+c))/(cos(d*x+c)+1))^(1/2)*(1/(cos(d*x+c)+1))^(1/2)*sin(d*x+c)+21*B*cos(d*x+c)^4*((a-b)/(a+b))^(1/2)*a^4+42*B*
cos(d*x+c)^2*((a-b)/(a+b))^(1/2)*a^4-6*A*cos(d*x+c)*((a-b)/(a+b))^(1/2)*b^4-63*B*cos(d*x+c)*((a-b)/(a+b))^(1/2
)*a^4+15*A*cos(d*x+c)^5*((a-b)/(a+b))^(1/2)*a^4+10*A*cos(d*x+c)^3*((a-b)/(a+b))^(1/2)*a^4-25*A*cos(d*x+c)*((a-
b)/(a+b))^(1/2)*a^4-82*A*EllipticE((-1+cos(d*x+c))*((a-b)/(a+b))^(1/2)/sin(d*x+c),(-(a+b)/(a-b))^(1/2))*a^2*b^
2*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*(1/(cos(d*x+c)+1))^(1/2)*sin(d*x+c)-6*A*EllipticE((-1+cos(d*
x+c))*((a-b)/(a+b))^(1/2)/sin(d*x+c),(-(a+b)/(a-b))^(1/2))*a*b^3*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/
2)*(1/(cos(d*x+c)+1))^(1/2)*sin(d*x+c)+84*B*EllipticF((-1+cos(d*x+c))*((a-b)/(a+b))^(1/2)/sin(d*x+c),(-(a+b)/(
a-b))^(1/2))*a^3*b*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*(1/(cos(d*x+c)+1))^(1/2)*sin(d*x+c)-21*B*El
lipticF((-1+cos(d*x+c))*((a-b)/(a+b))^(1/2)/sin(d*x+c),(-(a+b)/(a-b))^(1/2))*a^2*b^2*(1/(a+b)*(b+a*cos(d*x+c))
/(cos(d*x+c)+1))^(1/2)*(1/(cos(d*x+c)+1))^(1/2)*sin(d*x+c)-63*B*EllipticE((-1+cos(d*x+c))*((a-b)/(a+b))^(1/2)/
sin(d*x+c),(-(a+b)/(a-b))^(1/2))*a^3*b*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*(1/(cos(d*x+c)+1))^(1/2
)*sin(d*x+c)+21*B*EllipticE((-1+cos(d*x+c))*((a-b)/(a+b))^(1/2)/sin(d*x+c),(-(a+b)/(a-b))^(1/2))*a^2*b^2*(1/(a
+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*(1/(cos(d*x+c)+1))^(1/2)*sin(d*x+c)-21*B*EllipticE((-1+cos(d*x+c))*
((a-b)/(a+b))^(1/2)/sin(d*x+c),(-(a+b)/(a-b))^(1/2))*a*b^3*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*(1/
(cos(d*x+c)+1))^(1/2)*sin(d*x+c)+39*A*cos(d*x+c)^4*((a-b)/(a+b))^(1/2)*a^3*b+27*A*cos(d*x+c)^3*((a-b)/(a+b))^(
1/2)*a^2*b^2+63*B*cos(d*x+c)^3*((a-b)/(a+b))^(1/2)*a^3*b+68*A*cos(d*x+c)^2*((a-b)/(a+b))^(1/2)*a^3*b-3*A*cos(d
*x+c)^2*((a-b)/(a+b))^(1/2)*a*b^3+63*B*cos(d*x+c)^2*((a-b)/(a+b))^(1/2)*a^2*b^2-82*A*cos(d*x+c)*((a-b)/(a+b))^
(1/2)*a^3*b+55*A*cos(d*x+c)*((a-b)/(a+b))^(1/2)*a^2*b^2+6*A*cos(d*x+c)*((a-b)/(a+b))^(1/2)*a*b^3-21*B*cos(d*x+
c)*((a-b)/(a+b))^(1/2)*a^2*b^2+21*B*cos(d*x+c)*((a-b)/(a+b))^(1/2)*a*b^3+6*A*b^4*((a-b)/(a+b))^(1/2)+51*A*sin(
d*x+c)*cos(d*x+c)*EllipticF((-1+cos(d*x+c))*((a-b)/(a+b))^(1/2)/sin(d*x+c),(-(a+b)/(a-b))^(1/2))*(1/(a+b)*(b+a
*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*(1/(cos(d*x+c)+1))^(1/2)*a^2*b^2+6*A*sin(d*x+c)*cos(d*x+c)*EllipticF((-1+co
s(d*x+c))*((a-b)/(a+b))^(1/2)/sin(d*x+c),(-(a+b)/(a-b))^(1/2))*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)
*(1/(cos(d*x+c)+1))^(1/2)*a*b^3+82*A*sin(d*x+c)*cos(d*x+c)*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*(1/
(cos(d*x+c)+1))^(1/2)*EllipticE((-1+cos(d*x+c))*((a-b)/(a+b))^(1/2)/sin(d*x+c),(-(a+b)/(a-b))^(1/2))*a^3*b-82*
A*sin(d*x+c)*cos(d*x+c)*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*(1/(cos(d*x+c)+1))^(1/2)*EllipticE((-1
+cos(d*x+c))*((a-b)/(a+b))^(1/2)/sin(d*x+c),(-(a+b)/(a-b))^(1/2))*a^2*b^2-6*A*sin(d*x+c)*cos(d*x+c)*(1/(a+b)*(
b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*(1/(cos(d*x+c)+1))^(1/2)*EllipticE((-1+cos(d*x+c))*((a-b)/(a+b))^(1/2)/s
in(d*x+c),(-(a+b)/(a-b))^(1/2))*a*b^3+84*B*sin(d*x+c)*cos(d*x+c)*EllipticF((-1+cos(d*x+c))*((a-b)/(a+b))^(1/2)
/sin(d*x+c),(-(a+b)/(a-b))^(1/2))*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*(1/(cos(d*x+c)+1))^(1/2)*a^3
*b-63*B*EllipticF((-1+cos(d*x+c))*((a-b)/(a+b))^(1/2)/sin(d*x+c),(-(a+b)/(a-b))^(1/2))*a^4*(1/(a+b)*(b+a*cos(d
*x+c))/(cos(d*x+c)+1))^(1/2)*(1/(cos(d*x+c)+1))^(1/2)*sin(d*x+c)+63*B*EllipticE((-1+cos(d*x+c))*((a-b)/(a+b))^
(1/2)/sin(d*x+c),(-(a+b)/(a-b))^(1/2))*a^4*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*(1/(cos(d*x+c)+1))^
(1/2)*sin(d*x+c))*((b+a*cos(d*x+c))/cos(d*x+c))^(1/2)*cos(d*x+c)^4*(1/cos(d*x+c))^(7/2)/sin(d*x+c)/(b+a*cos(d*
x+c))

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{{\left (B \sec \left (d x + c\right ) + A\right )}{\left (b \sec \left (d x + c\right ) + a\right )}^{\frac{3}{2}}}{\sec \left (d x + c\right )^{\frac{7}{2}}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*sec(d*x+c))^(3/2)*(A+B*sec(d*x+c))/sec(d*x+c)^(7/2),x, algorithm="maxima")

[Out]

integrate((B*sec(d*x + c) + A)*(b*sec(d*x + c) + a)^(3/2)/sec(d*x + c)^(7/2), x)

________________________________________________________________________________________

Fricas [F]  time = 0., size = 0, normalized size = 0. \begin{align*}{\rm integral}\left (\frac{{\left (B b \sec \left (d x + c\right )^{2} + A a +{\left (B a + A b\right )} \sec \left (d x + c\right )\right )} \sqrt{b \sec \left (d x + c\right ) + a}}{\sec \left (d x + c\right )^{\frac{7}{2}}}, x\right ) \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*sec(d*x+c))^(3/2)*(A+B*sec(d*x+c))/sec(d*x+c)^(7/2),x, algorithm="fricas")

[Out]

integral((B*b*sec(d*x + c)^2 + A*a + (B*a + A*b)*sec(d*x + c))*sqrt(b*sec(d*x + c) + a)/sec(d*x + c)^(7/2), x)

________________________________________________________________________________________

Sympy [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*sec(d*x+c))**(3/2)*(A+B*sec(d*x+c))/sec(d*x+c)**(7/2),x)

[Out]

Timed out

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{{\left (B \sec \left (d x + c\right ) + A\right )}{\left (b \sec \left (d x + c\right ) + a\right )}^{\frac{3}{2}}}{\sec \left (d x + c\right )^{\frac{7}{2}}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*sec(d*x+c))^(3/2)*(A+B*sec(d*x+c))/sec(d*x+c)^(7/2),x, algorithm="giac")

[Out]

integrate((B*sec(d*x + c) + A)*(b*sec(d*x + c) + a)^(3/2)/sec(d*x + c)^(7/2), x)